
1

Software Interfaces to
Cryptographic Algorithms

Pieter Philippaerts
Pieter.Philippaerts@cs.kuleuven.be

Based on slides by Frank Piessens

2

Overview

▫Design Principles

▫The native Windows CryptoAPI

· Cryptography API: Next Generation (CNG)

▫The Java Cryptography Architecture and
Extensions (JCA/JCE)

▫The .NET Cryptographic Library

▫The OpenBSD Cryptographic Framework

▫Key management issues

▫Conclusion

3

Crypto Timeline

▫1998: DES brute-forced in 22 hours

▫2000: AES selected as NIST standard

▫2001: RC4 weakness breaks WEP

▫2002: end-of-life of DES (inc. TripleDES),
SHA2 introduced

▫2004: MD5, RIPEMD broken

▫2005: SHA1 broken

▫2012: SHA3 introduced

4

Design Requirements

▫New algorithms get introduced

· The architecture should be extensible

▫Algorithms get broken

· Developers should be able to easily replace one

algorithm with another

5

Design Principles

▫Algorithm independence

· Engine classes / Factory methods

▫Implementation independence

· Provider-based architecture

▫Implementation interoperability

· Transparent and opaque data types

Bottom Line: security mechanisms should be
easy to change over time

6

Opaque vs transparent data

▫Representation of data items like keys,
algorithm parameters, initialization vectors:

· Opaque: chosen by the implementation object

· Transparent: chosen by the designer of the

cryptographic API

▫Transparent data allow for implementation
interoperability

▫Opaque data allow for efficiency or
hardware implementation

7

Crypto frameworks and CSP’s

▫A cryptographic framework defines:

· Engine classes (and possibly algorithm classes)

· Transparent key and parameter classes

· Interfaces for opaque keys and parameters

▫A cryptographic service provider defines:

· Implementation classes

· Opaque key and parameter classes

· Possibly methods to convert between opaque and

transparent data

8

Overview

▫Design Principles

▫The native Windows CryptoAPI

· Cryptography API: Next Generation (CNG)

▫The Java Cryptography Architecture and
Extensions (JCA/JCE)

▫The .NET Cryptographic Library

▫The OpenBSD Cryptographic Framework

▫Key management issues

▫Conclusion

9

The Windows CryptoAPI

▫Introduced with Windows 95/Windows NT4

▫C-based library

▫Still used by most Windows programs
today

10

Cryptographic Service Providers

▫Pluggable libraries

▫Implement different cryptographic
algorithms

▫Own a key database

▫Windows and IE ship with a number of
CSPs

· Depending from version to version and language to

language

11

Key databases

▫Stores persistent keys

▫Contains a number of key containers

· Has a unique name

· One for each user

· Applications can create new containers

▫Saved in a secure file

· With access control

· Optional ‘strong protection’

12

Keys

▫Session keys

· Used for symmetric encryption

· Volatile

▫Public/private key pairs

· Typically two pairs per user (one for key exchange,

one for digital signatures)

▫They are opaque

· All you get is an identification number (handle)

· You can export them, though

13

The Windows CryptoAPI

▫Example: encrypt data

App
Crypto

API
CSP

1: csp = CryptAcquireContext
(<CSP provider name>, …)

3: key = CryptGenKey
(csp, <algorithm ID>)

5: CryptSetKeyParam
(key, <IV, mode, padding, …>)

7: CryptEncrypt
(key, <data>)

2: csp = CPAcquireContext
(…)

4: key = CryptGenKey
(csp, <algorithm ID>)

6: CryptSetKeyParam
(key, <IV, mode, padding, …>)

8: CryptEncrypt
(key, <data>)

14

Additional support for…

▫Cryptographic Message Syntax (CMS)

▫Public key infrastructure

▫Smart cards

▫Authenticode

▫XML signatures

· Windows 7 and higher

15

Summary

▫To add an algorithm, a new CSP must be
implemented

· Not easy

▫Impossible to write algorithm independent
code

· There is no notion of „a default algorithm‟

· However, there are defaults for implementations

▫A CSP is an island; you cannot modify its
behavior

16

Cryptography: Next Generation

▫Introduced with Windows Vista

▫Aims to replace Windows CryptoAPI

· Hence, also a C-based library

▫Has benefits over the CryptoAPI

· Easy plug-in creation, better extensibility

· Crypto isolation

· Support for algorithmic independence

- In CMS, SSL/TLS, …, your application

17

Overview

▫Design Principles

▫The native Windows CryptoAPI

· Cryptography API: Next Generation (CNG)

▫The Java Cryptography Architecture and
Extensions (JCA/JCE)

▫The .NET Cryptographic Library

▫The OpenBSD Cryptographic Framework

▫Key management issues

▫Conclusion

18

The JCA/JCE

▫Java Crypto API structured as a
cryptographic framework with CSPs

▫Split in:

· The Java Cryptography Architecure (JCA)

· The Java Cryptography Extensions (JCE)

▫This split is because of US export-control
regulations for cryptography

19

Engine classes

▫Abstraction for a cryptographic service

· Provide cryptographic operations

· Generate/supply cryptographic material

· Generate objects encapsulating cryptographic keys

▫Define the Cryptographic API

▫Bridge pattern or inheritance hierarchy to
allow for implementation independence

▫Instances created by factory method

20

Bridge Pattern

21

Inheritance-based decoupling

MessageDigest

update(byte[] input): void

digest() : byte[]

…

return SHA1.digestSize

getDigestSize() : int

SHA1

update(byte[] input): void

digest() : byte[]

…
getDigestSize() : int

Md5

update(byte[] input): void

digest() : byte[]

…
getDigestSize() : int

SHA1-Impl2

update(byte[] input): void

digest() : byte[]

…
getDigestSize() : int

SHA1-Impl1

update(byte[] input): void

digest() : byte[]

…
getDigestSize() : int

22

Engine classes (JCA)

▫MessageDigest

hash functions

▫Signature

▫SecureRandom

▫KeyPairGenerator

generate new key pairs

▫KeyFactory

convert existing keys

▫CerticateFactory

generate certificates

from encoded form

▫KeyStore

database of keys

▫AlgorithmParameters

▫AlgorithmParameter-
Generator

java.security.*

23

Engine classes (JCE)

▫ Cipher

encryption, decryption

▫ Mac

▫ KeyGenerator

generate new symmetric keys

▫ SecretKeyFactory

convert existing keys

▫ KeyAgreement

javax.crypto.*

24

Key classes

Opaque
Representation

▫No direct access to
key material

▫Encoded in provider-
specific format

▫java.security.Key

Transparent
Representation

▫Access each key material
value individually

▫Provider-independent
format

▫java.security.KeySpec

y = …

p = …

q = …

g = …

KeyFactory

25

Parameter classes

Opaque
Representation

▫No direct access to
parameter fields

▫Encoded in provider-
specific format

▫AlgorithmParameters

Transparent
Representation

▫Access each parameter
value individually

▫Provider-independent
format

▫AlgorithmParameterSpec

g = …

p = …

q = …

getParameterSpec()

init(paramSpec)

26

Overall structure of the framework

▫Security class encapsulates configuration
information (what providers are installed)

▫Per provider, an instance of the provider
class contains provider specific
information (e.g. what algorithms are
implemented in what classes)

▫Factory method on the engine class
interacts with the Security class and
provider objects to instantiate a correct
implementation object

27

Example: creating ciphers

application : Cipher

1: getInstance("DES/CBC/PKSC5Padding", "IAIK")

Security

IAIK : Provider

2: getProvider("IAIK")

3: getProperty("Cipher.DES")

des : CipherSpi

4: CipherSpi()

5: engineSetMode("CBC")

6: engineSetPadding("PKCS5Padding")

28

Additional support

▫Secure streams

· For easy bulk encryption and decryption

▫Signed objects

· Integrity checked serialized objects

▫Sealed objects

· Confidentiality protected serialized objects

▫Working with certificates

▫Keystores

29

Summary

▫Very easy integration of new classes

· Inherit from the correct class

▫Cryptographic configuration

· To set the defaults

30

Overview

▫Design Principles

▫The native Windows CryptoAPI

· Cryptography API: Next Generation (CNG)

▫The Java Cryptography Architecture and
Extensions (JCA/JCE)

▫The .NET Cryptographic Library

▫The OpenBSD Cryptographic Framework

▫Key management issues

▫Conclusion

31

The .NET cryptographic library

▫CSP based library that uses inheritance
based decoupling

▫Bulk data processing algorithms are all
made available as ICryptoTransforms

▫Essentially 2 methods: TransformBlock()
and TransformFinalBlock()

ICryptoTransformInput block Output block

32

ICryptoTransform and CryptoStream

▫ICryptoTransforms can wrap streams
E.g. (in read mode)

Resulting stream

Wrapped stream

ICryptoTransform

33

Bulk data engine classes

▫SymmetricAlgorithm, with algorithm
classes

· TripleDES, DES, Rijndael, …

▫HashAlgorithm, with algorithm classes

· SHA1, MD5, …

▫KeyedHashAlgorithm, with algorithm
classes

· HMACSHA1, MACTripleDES, …

34

Asymmetric engine classes

▫Generic AsymmetricAlgorithm engine class

· RSA, (EC)DSA and ECDH algorithm classes

▫Specialized engine classes for typical uses
of asymmetric cryptography, that take care
of padding and formatting

· AsymmetricKeyExchangeFormatter

· AsymmetricSignatureFormatter

35

Engine classes for key generation

▫RandomNumberGenerator

· For generating secure random numbers

▫DeriveBytes

· For deriving key material from passwords

36

Other functionality…

▫Facilities for interacting with Windows
CryptoAPI / CNG

· To manage CryptoAPI Key containers manually

· To call extended functionality in CryptoAPI

▫Configuration mechanism

· The factory methods that create engine classes are

driven by a configuration file that can be edited to

change default algorithms and implementations

▫On top of the .NET crypto API, an
implementation of XML Digital Signatures
is provided

37

Differences between Java and .NET

▫.NET class structure is much simpler

· Hardly support for opaque keys

· Wrappers around the CryptoAPI

· Perhaps too simple?

38

Problems with transparent keys

39

Problems with transparent keys

SymmetricAlgorithm algo
= SymmetricAlgorithm.Create();

algo.Key = …

algo.IV = …

encryptor = algo.CreateEncryptor();

encryptor.TransformBlock(…);

◄ PROBLEM

40

Problems with transparent keys

▫Solution: add opaque key support

41

Problems with transparent keys

SymmetricAlgorithm algo
= SymmetricAlgorithm.Create();

algo.FromXmlString(…);

encryptor = algo.CreateEncryptor();

encryptor.TransformBlock(…);

42

Problems with wrapper code

43

Problems with wrapper code

44

Problems with wrapper code

45

Problems with wrapper code

▫RSAOAEPKeyExchangeFormatter/Deformatter

▫RSAPKCS1SignatureFormatter/Deformatter

▫DSASignatureFormatter/Deformatter

46

Problems with wrapper code

public byte[] CreateKeyExchange(...) {

if (rsaKey is RSACryptoServiceProvider) {

return
((RSACryptoServiceProvider)rsaKey).Encrypt(...);

} else {

<perform padding>

return rsaKey.EncryptValue(<padded bytes>);

}

}

47

Problems with wrapper code

▫Problem: only RSACryptoServiceProvider
gets a ‘special’ treatment

· Custom RSA implementations must support raw

RSA

48

Problems with wrapper code

▫Solution:

49

Problems with wrapper code

public byte[] CreateKeyExchange(...) {

if (! rsaKey.SupportsRaw) {

return rsaKey.Encrypt(...);

} else {

<perform padding>

return rsaKey.EncryptValue(<padded bytes>);

}

}

50

Summary

▫Extensible class hierarchy

▫Cryptographic configuration support

▫Some small issues

· Can be resolved with some minor tweaks

51

Overview

▫Design Principles

▫The native Windows CryptoAPI

· Cryptography API: Next Generation (CNG)

▫The Java Cryptography Architecture and
Extensions (JCA/JCE)

▫The .NET Cryptographic Library

▫The OpenBSD Cryptographic Framework

▫Key management issues

▫Conclusion

52

OpenBSD

▫NetBSD spin-off

▫Focuses on security

· Cryptography is the cornerstone of the system

· Defensive programming

- Periodically go through source

53

The OpenBSD Crypto Framework

▫OpenBSD Cryptographic Framework (OCF)

· “Asynchronous service virtualization layer”

· Resides in kernel

· Offers uniform access to crypto hardware

· Used by

- Producers (crypto hardware)

- Consumers (other kernel modules)

54

The OpenBSD Crypto Framework

▫Two modi operandi

· Session-based

- Symmetric crypto, hasing

- Session caching features

· Individual operations

- Asymmetric crypto

55

The OpenBSD Crypto Framework

▫Producers

· Are drivers

· Registers with OCF

- Supported algorithms

- Other capabilities (chaining, RNG, …)

· One pseudo-driver

- Software crypto

56

The OpenBSD Crypto Framework

▫Consumers

· Other modules in kernel (e.g. IPSec)

· Send asynchronous requests to the OCF

- Get notified when the work is complete

- Synchronous requests not supported

57

The OpenBSD Crypto Framework

▫A consumer doesn’t know which producer
it’s talking to

· The OCF takes care of this automatically

· Enables load-balancing

· Enables session-migration

- When hardware is added/removed (i.e. PCMCIA
card)

- On-demand

· Important difference between OCF and

Java/.NET/CryptoAPI

58

The OpenBSD Crypto Framework

▫This is a kernel framework

▫User-level support is added through the
/dev/crypto interface

· Synchronous!

· Based on ioctl() calls

· Not very user friendly

· Frameworks like OpenSSL offer abstractions over

/dev/crypto

59

Summary

▫Extensible (through device drivers)

▫Crypto configuration is done by the
framework behind the scenes

· Applications do not see the different „CSPs‟

60

Overview

▫Design Principles

▫The native Windows CryptoAPI

· Cryptography API: Next Generation (CNG)

▫The Java Cryptography Architecture and
Extensions (JCA/JCE)

▫The .NET Cryptographic Library

▫The OpenBSD Cryptographic Framework

▫Key management issues

▫Conclusion

61

Key management issues

▫Generating keys

▫Key length

▫Storing keys

▫Key establishment

▫Key renewal

▫Key disposal

62

Generating keys

▫Algorithm security = key secrecy

▫Key should be hard or impossible to guess

· Human password dictionary attack!

· Better: hash of entire pass-phrase

· Machine-generated use cryptographically secure

pseudo-random generator

63

Key length

▫Trade-off: information value cracking cost

▫Symmetric algorithms

· $1 000 000 investment in VLSI-implementation

▫RSA

56 bits 64 bits 128 bits

1 hour 10 days 1017 years

Year vs. Individual vs.
Corporation

vs.
Government

2000 1024 1280 1536

2005 1280 1536 2048

2010 1280 1536 2048

64

Storing keys

▫Simplest: human memory

· Remember key itself

· Key generated from pass-phrase

▫Use Operating System access control

▫Key embedded in chip on smart card

▫Storage in encrypted form

· Key encryption keys data encryption keys

▫Limit key lifetime depending on

· Value of the data

· Amount of encrypted data

65

Key establishment

▫Key agreement = Two parties compute a
secret key together

· E.g. Diffie – Hellman protocol

▫Key distribution or transport = One party
generates a key and distributes it in a
secure way to all authorized parties

66

Key distribution

▫Using symmetric encryption

· Trusted party: Key Distribution Center (KDC)

· General idea (oversimplified:)

KDC
Ka, Kb

Alice Bob

Bob?

{K}KA, {K}KB

{K}KB

67

Key distribution

▫Using public-key encryption

· No need for KDC?

Alice Bob

S

Public key?

P

PKB

{M}PKB

– Man-in-the-middle attack!

68

▫How can Alice be sure she got Bob’s public
key?

· Solution: Certificates

Public Key Infrastructure (PKI)

· Discussed later

Alice Bob

S

Public key?

{M}PKE

Public key?

PKE

P
Eve

S {M}PKB

PKB

P

M!

69

Key renewal

▫Best practice:

· Limit the amount of data encrypted with a single key

· Limit the amount of time a key is in use

▫Hence:

· Need for mechanisms to renew keys

70

Key disposal

▫Once a key is no longer used, what should
happen?

· Short-term keys:

- Dispose in a secure way

· Long-term keys:

- Encryption:

Re-encrypt old data, or store key securely

- Signing

Signing key should be disposed of securely

Verification key should be stored securely

71

Summary

▫Good key management is essential to
achieve any security from cryptography

▫Inappropriate

· Key generation

· Key storage

· Or key establishment

is often the cause of security breaches

72

Overview

▫Design Principles

▫The native Windows CryptoAPI

· Cryptography API: Next Generation (CNG)

▫The Java Cryptography Architecture and
Extensions (JCA/JCE)

▫The .NET Cryptographic Library

▫The OpenBSD Cryptographic Framework

▫Key management issues

▫Conclusion

73

Conclusion

▫Cryptographic primitives offer well-defined
but complex security guarantees

· Precisely saying what security a crypto primitive

offers is non-trivial

▫As a consequence, cryptographic
primitives are hard to use correctly

· Mainstream developers should typically not use

them

· Use API to higher-level protocols instead

